
metabolism. Thus from the standpoint
of examining bone mass questions,
well-matched normal women are ap-
propriate controls for this study.

It is noteworthy that our patients
started the study with greater mean
bone density than did the controls. This
observation may simply reflect normal
variation in initial bone mass in a small
series of women. It is possible, however,
that the greater initial bone mass of the
patients implied an increased degree of
endogenous estrogenization, compared
with healthy controls, thereby predis-
posing the patients to the development
of breast carcinoma. One study of pa-
tients with breast cancer has shown a
positive relationship between bone min-
eral content and the amount of tumor
tissue estrogen receptors, the latter re-
ceptors providing a possible measure-
ment of estrogen effect in the patients
(26).

In summary, we found preserva-
tion of bone mineral density in
postmenopausal patients with breast
cancer during the first year of tamox-
ifen treatment, whereas healthy post-
menopausal controls experienced a pre-
dictable and significant loss of spinal
bone mineral over the same amount of
time. If larger, more long-term stud-
ies bear out these preliminary find-
ings, concerns about accelerated bone
mineral loss in tamoxifen-treated post-
menopausal breast cancer patients may
be resolved. Moreover, tamoxifen may
prove to be beneficial in the treatment
of postmenopausal osteoporosis in a se-
lected population of normal women for
whom estrogen supplementation may
be contraindicated.
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Display and Analysis of
Patterns of Differential Activity
of Drugs Against Human
Tumor Cell Lines: Development
of Mean Graph and
COMPARE Algorithm

K D. Paull, * R H. Shoemaker,
L. Hodes, A. Monks,
D. A. Scudiero, L Rubinstein,
J. Plowman, M. R Boyd

The objective of this study was to de-
velop and investigate an approach to
optimally detect, rank, display, and an-
alyze patterns of differential growth
inhibition among cultured cell lines.
Such patterns of cellular responsive-
ness are produced by substances tested
in vitro against disease-oriented pan-
els of human tumor cell lines in a
new anticancer screening model un-
der development by the National Can-
cer Institute. In the first phase of the
study, we developed a key methodolog-
ical tool, the mean graph, which al-
lowed the transformation of the nu-
merical cell line response data into
graphic patterns. These patterns were
particularly expressive of differential
cell growth inhibition and were con-
veniently amenable to further analy-
ses by an algorithm we devised and
implemented in the COMPARE com-
puter program. [J Natl Cancer Inst
81:1088-1092, 1989]
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The National Cancer Institute (NCI)
is implementing a new anticancer drug-
screening program using a disease-
oriented panel of cultured human tu-
mor cell lines for the initial stages of
screening. More detailed aspects of this
program and its origins, goals, meth-
ods, techniques, and rationale were de-
scribed previously (1-4). Criteria to de-
fine activity in the new screen are being
explored. One criterion under study, dif-
ferential cell growth inhibition, was the
principal focus of our study.

Differential growth inhibition as de-
fined here means that a cell line or
group of cell lines can be inhibited to
a given extent at a lower concentra-
tion of test drug than is required to ex-
ert the same effect on other cell lines.
Differential growth inhibition has not
been systematically investigated as a
criterion for new drug selection. There-
fore, unique data treatment and display
methods were necessary for examina-
tion of its potential for determining ac-
tivity in the new NCI drug screen. The
objective of this study was development
of methods to optimally detect, rank,
and display test results that signal dif-
ferential growth inhibition. A key re-
sult of the first phase of the study, the
mean graph, has catalyzed development
of additional methods by transforming
the numerical cell line response data
into graphic patterns that express dif-
ferential growth inhibition.

Methods
We performed dose-response test-

ing with cells from each cell line in
a pilot screening panel. This panel
consisted of =50 cell lines, including
colon, lung, ovarian, and renal carci-
noma; melanoma; central nervous sys-
tem tumors; human leukemia; and a
miscellaneous group of cell lines in-
cluding the MCF-7 breast cancer and
P388 murine leukemia cell lines and
multidrug-resistant variants of these
two lines. Test samples were prepared
in dimethyl sulfoxide at their maximum
soluble concentrations, diluted 1:200
with medium, and tested in culture at
five log10 dilutions.

Drug screening was performed with
automated assay methods described
previously (2,3). It is important to note
that use of a different assay method

or end point determination could yield
substantively different screening data
profiles and interpretations. Neverthe-
less, our general approach to data dis-
play and analysis may be applicable to
a variety of assays and/or end points.

Results and Discussion
The large amount of data gener-

ated for each compound («=50 dose-
response curves) required an optimal
format for the graphic presentation of
differential cell growth inhibition. The
mean graph format developed for this
purpose not only permits the ready vi-
sualization of any differential growth
inhibition expressed by a test com-
pound but also creates a framework
for logical analysis of the data. This
framework provides the foundation for
computer-assisted analysis of the data,
a vital development, considering the un-
precedented scale of the NCI in vitro
drug-screening program. However, the
most intriguing property of the mean
graph format is that it yields identi-
fiable and characteristic "fingerprint"
patterns, which appear to possess a re-
markable degree of structure-function
information.

Mean Graph

The concept for the mean graph
emerged in part from attempts to de-
tect differential growth inhibition from
a standard bar graph presentation.
Indications of differential growth inhi-
bition in a standard bar graph format
reside only in the "ragged edge," the re-
gion between the tips of the bars for
the least responsive cell line and the
most responsive cell line. Figure 1 illus-
trates a typical horizontal bar graph and
the corresponding mean graph. In this
horizontal bar graph, the lengths of the
bars are directly proportional to the po-
tency of the test compound against the
tumor cell line, which is expressed as
the logarithm of the concentration re-
sulting in 50% growth inhibition (IC50).
The region between the baseline and
the right end of the bar representing
the least potent response (fig. 1 A) tends
to defeat the perception of differential
growth inhibition. As an alternative, we
developed a graph centered at the arith-
metic mean of the logarithm of the IC50

values for all cell line responses mea-
sured for a compound. While choice of
the mean as an anchor point is arbi-
trary, its use has proven to be advan-
tageous for the development of other
mean-graph-derived analyses such as
the estimation of relative cell line sen-
sitivities (5).

The mean graph (fig. 1C) is con-
structed by projecting bars to the right
or left of the mean, depending on
whether cell sensitivity to a test drug is
more or less than average. The length
of a bar is proportional to the differ-
ence between the logarithm of the cell
line IC50 and the mean. Differential
growth inhibition is depicted by the bar
(delta), which projects to either side of
the mean. A bar projecting 3 log units
to the right of the mean, for example,
would reflect a cellular response 1,000
times more sensitive than the average
of all of the cellular responses to the
compound represented on the graph.

Ranking by Degree of Differential
Growth Inhibition

One approach to surveillance of the
drug-screening data base is to rank
compounds by their degree of differ-
ential growth inhibition. A novel tech-
nique for ranking follows from the
mean graph format.

The first step in this approach is to
identify a single best delta for a com-
pound among all the deltas generated
for it. This best delta is identified as
Delta. The simplest definition of Delta
is the highest numerical value of delta.
However, a potentially better definition
of the best delta is that delta repre-
senting the largest number of standard
deviations from the mean of all the
deltas observed for a cell line. Thus,
Delta is the statistically rarest delta. The
advantage of this statistical approach
is that it helps to reduce the selection
bias toward the intrinsically more sen-
sitive cell lines. To obtain Delta by this
method, one calculates the number of
standard deviations from the mean of
deltas that each delta represents.

The cell line-specific mean of delta
values and the corresponding standard
deviations are computed from the delta
values for each cell line for all of
the compounds evaluated. For a given
delta, the appropriate mean is sub-
tracted from the delta, and this differ-
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Figure 1. Comparison of two display formats
for perception of differential growth inhibition in
disease-oriented human tumor cell line panel. In
standard horizontal bar graph (left), display of
differential drug effects is confined to "ragged
edge" (IB). Ready perception of differential ef-
fects in section IB is effectively defeated by pres-
ence of large base section, 1A. Mean graph for-
mat, section 1C (right), facilitates perception of
differential responses of cell lines by eliminat-
ing base section and projecting bars in opposite
directions depending on whether cell sensitivity
to the drug is more or less than average. Re-
sulting fingerprint patterns provide delta values
used in COMPARE (pattern-recognition) analy-
ses. LEUK = leukemia; NSCLC = non-small cell
lung cancer, SCLC = small cell lung cancer; CNS
= central nervous sytem; and MISC = miscella-
neous. Range = No. of log units between values
for most sensitive and least sensitive cell lines.

ence is divided by the corresponding
standard deviation. The quotient is the
number of standard deviations from the
cell line-specific mean. The means and
standard deviations for each cell line
are listed in table 1.

The second step in this method is
to rank compounds in order of their
differential growth inhibition using the
Deltas selected in the first step. Search-
ing and sorting by Deltas provides an
efficient means to identify compounds

exhibiting differential growth inhibi-
tion.

Pattern-Recognition Algorithm

Another application of the mean
graph format relates to pattern recog-
nition. This format creates a char-
acteristic fingerprint pattern for each
compound. The possibility that these
patterns might contain other exploitable
information was investigated. We de-
vised a simple algorithm that was im-

plemented in the COMPARE com-
puter program to rank the similarity of
the mean graph pattern of a specified
"seed" compound to the patterns of all
the other compounds in the NCI screen-
ing project data base. Any previously
tested compound can be used as the
seed to initiate the pattern-recognition
program.

The COMPARE program evaluates
the similarity of mean graph patterns
by computing average differences be-
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Table 1. Cell line-specific means, standard deviations, and confidence limits of delta*

Cell line

SK-MEL-2
RPMI-7951
LoVo
SW620
NCI-H23
NCI-H460
DMS-114
HT29
H69
NCI-H125
WiDr
SK-MEL-5
NCI-H146
SN12-KI
DLD-1
OVCAR-3
Malme-3M
NCI-H524
U-251
A549
OVCAR-5
NCI-H522
CCRF-CEM
SNB44
TE671
OVCAR-4
A2780
MCF-7
SNB-19
K562
NCI-H82
HCC2998
SK-MES-1
A498
HL-60
Caki-1
OVCAR-8
MOLT-4
LOX
UO-31
NCI-H358
A704
EKV-X
P388
NCI-H520
MCF-7/ADR \.
P388/ADR
NC1-H322
SNB-75

Mean

-0.044
0.034
0.032
0.084
0.049
0.000
0.085

-0.088
0.077
0.051
0.049
0.063
0.028

-0.006
-0.124
-0.019

0.014
0.030
0.065

-0.100
-0.117

0.143
0.276

-0.097
0.048

-0.186
0.192

-0.062
-0.053

0.132
0.163

-0.129
0.036

-0.002
0.185
0.001

-0.111
0.268
0.071

-0.200
-0.140
-0.026
-0.303

0.230
-0.089
-0.174
-0.138
-0.061
-0.329

SD

0.332
0.336
0.359
0.364
0.365
0.377
0.392
0.393
0.394
0.396
0.398
0.399
0.401
0.405
0.406
0.407
0.408
0.417
0.421
0.422
0.432
0.434
0.434
0.440
0.443
0.444
0.444
0.447
0.447
0.448
0.450
0.453
0.460
0.465
0.468
0.474
0.479
0.481
0.482
0.486
0.503
0.537
0.544
0.561
0.570
0.579
0.582
0.586
0.750

99.96%
Confidence

limits

.116

.210

.288

.358

.326

.321

.457

.287

.455

.438

.443

.460
1.431
1.412
1.299
.406
.443

1.489
1.537
.376

1.396
.663
.796

1.442
1.599
.369

1.748
1.504
1.513
1.698
1.738
1.455
.647

1.627
1.824
.658

1.567
1.950
1.760
1.500
.621
.853
:600

..194
.906
.852
.900
.990

2.297

No. of
delta

values

908
871
855
882
901
905
833
897
794
866
461
876
713
712
912
658
893
764
824
914
578
859
734
716
874
725
800
896
797
867
767
534
575
711
693
522
736
846
875
772
812
700
867
896
776
889
376
861
625

*Data updated November 16, 1987. For references to test protocol and sources of cell lines, see
Methods section.

tween the deltas obtained for a specified
seed compound and the corresponding
deltas for each of the other compounds
in the data base. For a seed compound
screened against a panel of 50 cell
lines, the 50 deltas obtained for those
cell lines are subtracted from the corre-
sponding deltas obtained in testing the
same 50 cell lines (or a subset of these
lines if all 50 were not tested) against
each of the other compounds in the data
base. In this way, the mean graph pat-

tern for the seed compound is sequen-
tially compared quantitatively with all
other mean graph patterns available.
For each compound, two parameters
are calculated: Av, which is the average
difference between deltas (computed as
the mean of the absolute values of the
differences), and Max, which is the
maximum difference observed.

The Av and the Max values are used
by the COMPARE program to create a
list of compounds ordered according to

the similarity of their mean graph pat-
terns to the mean graph pattern of the
seed compound. The compounds are
first sorted by Av values; compounds
with lower Av values are ranked higher.
Then compounds with the same Av val-
ues are further sorted by Max values;
compounds with lower Max values are
ranked higher. The purpose of creat-
ing the ordered list was to first rank
the compounds by their similarity in
mean graph fingerprints and then to in-
vestigate whether this similarity corre-
lates with any other significant property
common to the ranked compounds and
the seed compound.

Since the meaning of the similar-
ity in mean graph patterns was the
central question, it was necessary to
obtain additional information about
the test compounds as well as rele-
vant information about the seed com-
pound. We constructed a data base of
88 test compounds suitable for this
purpose and analyzed this data base
with the COMPARE program. Appli-
cation of the algorithm to data sets
restricted to well-known or prototyp-
ical seed compounds led to intrigu-
ing results. Compounds known to be
DNA binders (table 2), biological alkyl-
ating agents, or antimetabolites were
grouped to a significant extent with
agents having similar activity or struc-
ture.

In table 2, the seed compound
was doxorubicin. The three compounds
with the closest Av values were mi-
toxantrone, amsacrine, and acodazole.
These three drugs and the seed com-
pound are thought to be DNA binders
and topoisomerase II inhibitors. The
matching sequence includes taxol, rhi-
zoxin, and then three more DNA
binders (oxantrazole, bisantrene, and
amonafide).

The COMPARE analysis using the
alkylating agent melphalan as the seed
for comparison showed a significant
clustering of the known alkylating
agents. Pipobroman, uracil mustard,
and chlorambucil were ranked in that
sequence as the closest matches to mel-
phalan in the test set. The antimetabo-
lite cytarabine was also used as the seed
compound in a COMPARE analysis. Its
close biological and structural analogue
fazarabine ranked second to thiogua-
nine in the listing.
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Table 2. COMPARE pattern-recognition program: similarity of DNA binders and topoisomerase II
inhibitors to doxorubicin*

Drug NSC
No.

Av Max No. of
cell lines

Ranget

Doxorubicin
Mitoxantrone
Amsacrine
Acodazole
Taxol
Rhizoxin
Oxantrazole
Bisantrene
Amonafide
Discreet
Mitotane
Merbarone^
10- Hydroxycamptothecin
Dacarbazine
Pyrazine diazohydroxide
Spiromustine
Busulfan
Hexamethylenebisacetamide
Carboplatin
Teroxirone
Hepsulfam
Ebifuramin
Pyrazole
Pipobroman
Phyllanthoside

123127
301739
249992
305884
125973
332598
349174
337766
308847

38721
336628
107124
45388

361456
172112

750
95580

241240
296934
329680
201047

45410
25154

328426

0.000
0.343
0.371
0.380
0.387
0.421
0.427
0.451
0.451
0.455
0.467
0.486
0.487
0.491
0.492
0.494
0.504
0.507
0.508
0.514
0.520
0.525
0.534
0.535
0.537

0.00
1.80
1.49
1.39
1.57
1.51
2.43
1.47
2.34
2.46
2.24
2.33
2.23
2.02
2.23
2.64
2.16
2.44
2.69
2.18
2.49
2.26
2.12
3.28
1.82

56
47
46
36
49
38
36
47
38
27
48
35

. 25
48
39
40
48
42
47
40
38
36 .
41
48
37

3.2
2.7
2.8
1.6
2.6
2.2
1.2
3.1
1.0
2.0
1.6
0.9
2.7
2.0
0.6
1.6
1.7
1.0
2.1
1.9
2.2
0.6
1.0
2.8
3.4

*Of 88 compounds tested, these 25 were most similar to doxorubicin in this analysis of differential
growth inhibition.

t Range = No. of log units between values for most sensitive and least sensitive cell lines.

(2) ALLEY MC, SCUDIERO DA, MONKS A, ET AL:
Feasibility of drug screening with panels of
human tumor cell lines using a microculture
tetrazolium assay. Cancer Res 48:589-601,
1988

(5) SCUDIERO D, SHOEMAKER RH, PAULL KD,
ET AL: Evaluation of a soluble tetra-
zolium/formazan assay for cell growth and
drug sensitivity in culture using human and
other tumor cell lines. Cancer Res 48:4827-
4833, 1988

(4) SHOEMAKER RH, MONKS A, ALLEY MC, ET AL:
Development of human tumor cell line pan-
els for use in disease-oriented drug screen-
ing. In Prediction of Response to Cancer
Chemotherapy (Hall T, ed). New York: Alan
R Liss, 1988, pp 265-286

(5) PAULL KD, HODES L, PLOWMAN J, ET AL:
Reproducibility and response patterns of the
IC50 values and relative cell line sensitivi-
ties from the NCI human tumor cell line drug
screening project. Proc Am Assoc Cancer Res
29:488, 1988

There is an important caveat that ap-
plies to our algorithm. The algorithm
must give a "best match" whether or
not a meaningful one exists in the data
base, and thus, unrelated compounds
are sometimes given a high ranking.
Despite this caveat, it seems that the
observed mean graph patterns express
valuable information, sometimes re-
flecting similarities in biological prop-
erties and/or chemical structure and
properties. Expression of such similar-
ities in the mean graphs appears to
be sufficiently robust that this rela-
tively simple algorithm of the COM-
PARE program can successfully detect
and rank these similarities in an order
that seems to have an exploitable de-
gree of correlation with independently
derived rankings of similarity based on
biochemical and/or structural consider-
ations.

Conclusions
We have developed a set of comput-

erized procedures to facilitate the de-
tection, ranking, display, and analysis

of patterns of differential growth inhi-
bition. These procedures are conceptu-
ally centered in the mean graph, which
was designed to graphically represent
screening results for individual com-
pounds tested against large numbers of
tumor cell lines. Experimental applica-
tions of the COMPARE program to a
limited data base accrued from the pilot
screen suggest the possibility of mean-
ingful clustering of mean graph patterns
that is related to biological properties
and/or chemical structure and proper-
ties. The potential wealth of informa-
tion to be generated in the course of
the new NCI drug-screening experi-
ment can be subjected to a wide vari-
ety of analytical procedures. Our work
represents only the first of many poten-
tial avenues to data display and analy-
sis that may be explored in the course
of this project.
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