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To pursue a systematic approach to the discovery of functional connections among diseases, genetic
perturbation, and drug action, we have created the first installment of a reference collection of
gene-expression profiles from cultured human cells treated with bioactive small molecules,
together with pattern-matching software to mine these data. We demonstrate that this
‘‘Connectivity Map’’ resource can be used to find connections among small molecules sharing a
mechanism of action, chemicals and physiological processes, and diseases and drugs. These results
indicate the feasibility of the approach and suggest the value of a large-scale community
Connectivity Map project.

A
fundamental challenge that arises

throughout biomedicine is the need to

establish the relation among diseases,

physiological processes, and the action of small-

molecule therapeutics. Our goal is to provide a

generic solution to this problem by attempting to

describe all biological states—physiological, dis-

ease, or induced with a chemical or genetic

construct—in terms of genomic signatures, create

a large public database of signatures of drugs and

genes, and develop pattern-matching tools to detect

similarities among these signatures. Using such a

resource, a researcher studying a drug candidate,

a gene, or a disease state could compare its sig-

nature to the database to discover unexpected

connections—much as one can compare a DNA

sequence to the GenBank database to identify

similar genes. We will refer to this resource as a

BConnectivity Map[ because of its potential to reveal

Bconnections[ among drugs, genes, and diseases.

In principle, there are many possible ge-

nomic signatures that might be used—including

DNA methylation patterns, mRNA levels, and

protein expression or metabolite profiles. To be

practical, however, such signatures should be

generated from a small number of cells at low

cost, in high throughput, and with sufficiently

high complexity to provide a rich description. At

present, only mRNA expression assayed on

DNA microarrays meets these criteria. We have

therefore chosen this as the Buniversal language[
with which to describe cellular responses.

Gene-expression profiling has historically

been applied in specific settings to elucidate the

mechanisms underlying a biological pathway

(1, 2), to reveal cryptic subtypes of a disease

(3, 4), and to predict cancer prognosis (5, 6).

But here we envisage its use as the means to

catalog the biological responses to a large number

of diverse perturbations. Of course, this idea is not

entirely new. A landmark study by Hughes et al.

(7) demonstrated that a compendium of gene-

expression data could be used for the functional

annotation of small molecules and genes, at least

in yeast. Although that study was encouraging,

the extent to which the approach would be

applicable to mammalian biology was not

obvious. More recently, a variety of commercial

databases of expression profiles from rat tissues

after systemic administration of known drugs

have been developed Ee.g., (8)^, and these appear

to have value for the identification of potential

toxicities of new chemical entities Ee.g., (9)^.
However, such in vivo studies suffer from

serious practical limitations. First, the type of

perturbagens that can be studied is limited. Only

small molecules with druglike physicochemical

properties can be effectively administered to live

animals. And systematic genetic perturbation

(i.e., with RNA interference) is not yet possible.

Second, the high cost of whole-animal studies

precludes contemplating such an approach at the

genome scale.

We hypothesized that perturbations in mam-

malian cell culture might provide an approach that

is truly generalizable, systematic, and biologically

relevant. However, several potential pitfalls must

be considered. Conceivably, a large number of

parameters would need to be optimized for each

perturbation, including cell type, concentration,

and treatment duration. Equally, analytical meth-

ods capable of detecting relevant signals in the

data might not be generally applicable. If so,

generation of a useful Connectivity Map would

be impractical. However, here we demonstrate—

through the recovery of known, and the discovery

of new, biological connections—that the Con-

nectivity Map concept is indeed viable.

Creating a First-Generation Connectivity Map

Perturbagens. We studied 164 distinct small-

molecule perturbagens, selected to represent a

broad range of activities, and including U.S. Food

and Drug Administration (FDA)–approved drugs

and nondrug bioactive ‘‘tool’’ compounds. We

included multiple compounds sharing molecular

targets (e.g., histone deacetylase inhibitors) to

determine whether such compounds would share

a molecular signature. Similarly, we profiled

compounds with the same clinical indication

(e.g., antidiabetics), which allowed us to deter-

mine whether connections could be established on

the basis of therapeutic class, even though the

mechanisms of action might be distinct. Further-

more, we chose some small molecules that act

proximal to gene expression (e.g., selective

estrogen receptor modulators) and some whose

primary targets are much more distal (e.g.,

immunomodulators, inhibitors of signal trans-

duction). Finally, we included some compounds

whose targets are not expressed in all cell types

(e.g., COX2 inhibitors), whose clinical effects are

non–cell-autonomous (e.g., aromatase inhibitors),

or whose activities are only discernible after

chronic, in vivo exposure (e.g., antipsychotics).

Cell lines. Ideally, one would generate pro-

files in a wide diversity of established and primary

cells, but practicality limits us to only a few lines

that can be stably grown over long periods of time.

For this pilot study we generated most of our data

in the breast cancer epithelial cell line MCF7

because it has been extensively molecularly char-

acterized, is used as a reference cell line in lab-

oratories throughout the world, and is amenable to

culture in microtiter plates. A subset of perturba-

gens were also profiled in the prostate cancer

epithelial cell line PC3 and the nonepithelial lines

HL60 (leukemia) and SKMEL5 (melanoma).

This diversity of cell types provides an opportu-

nity to assess the extent to which results are

context dependent.

Concentration and duration of treatment.

High-throughput, cell-based small-molecule

screens are often performed at a single, relatively

high concentration of 10 mM. We adopted this

approach as well, given that the optimal concen-

tration is not known for many compounds of

potential interest. For some compounds, we used

concentrations reported to be effective in cell
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culture or to approximate the maximum attain-

able plasma concentrations after therapeutic

dosing. We also profiled a subset of compounds

across a range of concentrations to explore the

sensitivity of results to dose.

As with concentration, the duration of com-

pound treatment might also affect the gene-

expression profiles. Profiles obtained too early

might not yield robust signals—particularly for

perturbations that do not directly modulate

transcription—and those obtained too late

might reflect secondary and tertiary responses.

Because our goal was to obtain signatures

related to direct mechanisms of action, we se-

lected a relatively early time point (6 hours

after compound addition, with a subset also

profiled at 12 hours for comparison).

Control perturbations. Every treatment ‘‘in-

stance’’ was defined relative to a control con-

sisting of cells grown in the same plate and

treated with vehicle alone. This approach was

taken to minimize the impact of batch-to-batch

biological and technical variation. Most of the

perturbagens were also profiled multiple times.

Overall data. Our data set was thus com-

posed of genomewide mRNA expression data

for 164 distinct bioactive small-molecule per-

turbagens and corresponding vehicle controls

applied to human cell lines for short duration.

These data were collected in multiple batches

over a period of 1 year by means of Affymetrix

GeneChip microarrays. A total of 564 gene-

expression profiles were produced, representing

453 individual instances (i.e., one treatment and

vehicle pair). Full details of the data set are

provided as table S1. The data are freely avail-

able for download at www.broad.mit.edu/cmap.

Querying the Connectivity Map

The traditional method for identifying small

molecules with similar effects on the basis of

gene-expression profiles is hierarchical cluster-

ing. Indeed, such a strategy was found to be useful

for analyzing data from yeast (7) and rat tis-

sues (10). However, we saw three drawbacks

with such an approach. First, with mammalian

cell culture, the dominant structure we detected

by hierarchical clustering was related to cell type

and batch effects (similarity among cells grown at

the same time), and this masked the more subtle

signals from short-duration treatment with small

molecules (fig. S1). Second, a hierarchical clus-

tering approach would require that all profiles be

generated on the same microarray platform,

limiting future utility. Third, and most important,

we required an analytical method that could

detect multiple components within the cellular

response to a given perturbation.

For these reasons, we adopted a nonpara-

metric, rank-based pattern-matching strategy

based on the Kolmogorov-Smirnov statistic (11),

as we described previously and later formalized

in Gene Set Enrichment Analysis (GSEA)

(2, 12, 13). The approach starts with a ‘‘query

signature’’ and assesses its similarity to each of

the reference expression profiles in the data set. A

query signature is any list of genes whose

expression is correlated with a biological state of

interest. Examples could include genes correlated

with a subtype of disease (e.g., drug-resistant

versus drug-sensitive leukemia) or regulated by a

biological process of interest (e.g., experimental

activation of a signaling pathway). Each gene in

the query signature carries a sign, indicating

whether it is up-regulated or down-regulated.

Because the query signature is unitless, it is not

tied to any technology platform.

The reference gene-expression profiles in

the Connectivity Map data set are also rep-

resented in a nonparametric fashion. Each pro-

file is compared to its corresponding intrabatch

vehicle-treated control. The genes on the array

are rank-ordered according to their differential

expression relative to the control; each treat-

ment instance thus gives rise to a rank-ordered

list of È22,000 genes.

The query signature is then compared to

each rank-ordered list to determine whether

up-regulated query genes tend to appear near the

top of the list and down-regulated query genes

near the bottom (‘‘positive connectivity’’) or

vice versa (‘‘negative connectivity’’), yielding a

‘‘connectivity score’’ ranging from þ1 to j1. A

null (zero) connectivity score is assigned where the

enrichment scores for the up- and down- regulated

genes have the same sign. All instances in the

database are then ranked according to their con-

nectivity scores; those at the top are most strongly

correlated to the query signature, and those at the

bottom are most strongly anticorrelated (Fig. 1).

(For expression profiles derived from a single

technology platform, we obtained similar results

using conventional measures of correlation, such

as the Pearson correlation coefficient.)

There is no standard approach for estimating

the statistical significance of the connections

observed. We therefore resorted to the simplest,

most empirical, and most transparent test we

could devise, and note that the power to detect

connections may be greater for compounds with

many replicates. Below, we have focused on

cases where the precise calculation of P-values

is not critical to support our conclusions be-

cause the observed connections were so

striking (and in several cases validated with

functional experiments).

Connections Between Small Molecules

HDAC inhibitors. We first determined whether

a query signature derived from a class of small

molecules could recover those same compounds

in the Connectivity Map. A recent report (14)

described gene-expression responses of T24

(bladder), MDA 435 (breast carcinoma), and

MDA 468 (breast carcinoma) cells treated with

three histone deacetylase (HDAC) inhibitors:

vorinostat (also known as suberoylanilide hy-

droxamic acid or SAHA), MS-27-275, and

trichostatin A. The authors of this study defined

a 13-gene signature (8 up-regulated and 5 down-

regulated genes; Signature S1) that was used to

query our database.

Despite the differences in the cells used to

generate the query signature and reference profiles,

the two highest-scoring compounds in the Con-

Fig. 1. The Connectivity Map
Concept. Gene-expression pro-
files derived from the treat-
ment of cultured human cells
with a large number of per-
turbagens populate a reference
database. Gene-expression sig-
natures represent any induced
or organic cell state of interest
(left). Pattern-matching algo-
rithms score each reference
profile for the direction and
strength of enrichment with the
query signature (center). Per-
turbagens are ranked by this
‘‘connectivity score’’; those at
the top (‘‘positive’’) and bottom
(‘‘negative’’) are functionally
connected with the query state
(right) through the transitory feature of common gene-expression changes.

REFERENCE DATABASE
(PROFILES)

CONNECTIONS

query output

BIOLOGICAL STATE 
OF INTEREST
(SIGNATURE)

up

down

strong
positive

positive

negative

weak
positive

null strong
negative
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nectivity Map were vorinostat and trichostatin A

(Fig. 2A). More important, the Connectivity Map

also revealed strong connectivity with two struc-

turally distinct compounds, valproic acid (initially

developed as an antiseizure drug) and HC toxin,

both of which are now known to have HDAC-

inhibitory activity but were not used to define the

query signature (Fig. 2, A and B). These results

indicate that the Connectivity Map would have

suggested the HDAC-inhibitory activity of these

compounds had it not already been known.

The ability to detect these HDAC inhibitors

was not highly sensitive to the precise concen-

tration of drug used to generate the reference

profiles. Specifically, the Connectivity Map

contains instances of valproic acid at six con-

centrations (10, 2, and 1 mM; 500, 200, and

50 mM) bracketing the commonly used HDAC-

inhibitory level of 1 mM. Only the two lowest

concentrations failed to yield a positive con-

nectivity score (Fig. 2A). The results indicate

that, at least for this example, connectivity can

be established without elaborate optimization of

cell type and compound concentration.

Estrogens. We next studied the effects of

estrogen, which is known to modulate nuclear

hormone signaling. The query signature was taken

from a report by an independent group (15) in

which MCF7 cells were treated with the natural

estrogen receptor (ER) ligand, 17b-estradiol (E2).

The query signature consisted of 129 genes (40

up- and 89 down-regulated; Signature S2).

The Connectivity Map yielded high posi-

tive connectivity scores for all instances of E2

in MCF7 cells. High connectivity scores were

also observed for genistein, which is a phyto-

estrogen (16). Weaker connectivity was seen

with 17a-estradiol, consistent with its markedly

lower affinity for ER than its stereoisomer (17)

(Fig. 3A).

The Connectivity Map also identified com-

pounds with clear negative connectivity, indi-

cating an opposite effect to that of E2. The

highest negative connectivity scores came from

fulvestrant, a known anti-estrogenic drug (18)

(Fig. 3B). Tamoxifen and raloxifene, also anti-

estrogens, scored negatively, but to a lesser ex-

tent (fig. S2). Together, these results indicate

that both agonists and antagonists can be dis-

covered directly from the Connectivity Map.

We used estrogen connectivity to explore the

impact of physiological context. Such context is

known to be particularly important in the study of

ER activity, where growing cells in culture

medium containing the estromimetic phenol red

and supplemented with complete serum (which

contains endogenous estrogens) often obscures

estrogen stimulation signals as measured with

traditional read-outs such as reporter assays or gel

shifts. We therefore asked whether the 129-gene

estrogen signature might be more robust to the

particulars of culture medium composition. In-

deed, the presence of phenol red and complete

serum had little effect on connectivity scores for

E2, even though the query signature was defined

under estrogen-free conditions (15). Indeed, the

connectivity scores were similar to those made in

phenol red-free medium with charcoal-stripped

serum (ssMCF7; Fig. 3A). However, the anti-

estrogen fulvestrant received a null connectivity

score in MCF7 cells under estrogen-free condi-

tions, consistent with its ‘‘pure antagonist’’ mode

of action (Fig. 3B). Similarly, no robust estro-

genic or anti-estrogenic connections were recov-

ered in treatments performed in PC3 or HL60

cells, neither of which expresses ER. These

results indicate that although gene-expression

signatures can be highly sensitive, some con-

nections will not be found if the reference

profiles are collected in cells that lack the ap-

propriate physiological or molecular context.

Phenothiazines. We next considered small

molecules that do not directly regulate gene ex-

pression. We studied the phenothiazine an-

tipyschotics, which as dopamine receptor

antagonists and calmodulin inhibitors are not

immediately proximal to transcription. Reference

profiles were generated for five phenothiazines

(chlorpromazine, fluphenazine, prochlorperazine,

thioridazine, trifluoperazine) representing three

structural subclasses (Fig. 4A). At least three in-

stances of each were produced, mainly in MCF7

cells and at a concentration of 10 mM, with the

exception of chlorpromazine, which was profiled

three times at 1 mM and only once at 10 mM.

For these experiments, query signatures were

generated from a subset of the reference profiles

within the Connectivity Map data set itself. A

query signature consisting of genes consistently

regulated across one instance of each of the five

phenothiazines was first established (Signature

S3). We then used this signature to assess the

recovery of all of the remaining phenothiazine

instances from our database. As anticipated, the

five instances used to derive the signature received

the highest connectivity scores. More important,

10 of the 13 nonsignature instances were also

highly ranked (Fig. 4B). The three instances not

Fig. 2. HDAC Inhibitors. (A)
HDAC inhibitors are highly
ranked with an external HDAC
inhibitor signature. The ‘‘bar-
view’’ is constructed from 453
horizontal lines, each represent-
ing an individual treatment
instance, ordered by their corre-
sponding connectivity scores
with the Glaser et al. (14)
signature (þ1, top; –1, bottom).
All valproic acid (n 0 18), tricho-
statin A (n 0 12), vorinostat
(n 0 2), and HC toxin (n 0 1)
instances in the data set are
colored in black. Colors applied
to the remaining instances re-
flect the sign of their scores
(green, positive; gray, null; red,
negative). The rank, name [in-
stance id], concentration, cell
line, and connectivity score for
each of the selected HDAC in-
hibitor instances is shown. Un-
abridged results from this query
are provided as Result S1. (B)
Chemical structures.
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receiving high connectivity scores were the low-

concentration chlorpromazine treatments; these

therefore served as useful specificity controls. Simi-

lar results were obtained with signatures produced

from different phenothiazine instances and with

different gene-selection criteria (Signatures S4 to

S6; fig. S3). These results show that the common

activity of these phenothiazine antipsychotic

compounds can be recovered by the Connectivity

Map, even when analyzed in nonneural cells. They

also demonstrate that the approach is not unduly

sensitive to signature-definition parameters.

The phenothiazine query signature did not

show strong connectivity with the nonpheno-

thiazine antipsychotics haloperidol and clozapine

(Fig. 4C). This is not surprising because, al-

though these antipsychotics ultimately target

the same neurotransmitter receptors, the recep-

tors themselves are not expressed in the cell

lines used. Indeed, the antipsychotics were in-

cluded in this data set as an extreme test of the

Connectivity Map concept.

The analysis of the phenothiazine query

signature did yield consistently strong negative

connectivity scores for arachidonic acid (Fig.

4C). Arachidonic acid is the primary substrate

for cyclooxygenases and lipoxygenases and is

thus a critical precursor for both prostaglandin

and leukotreine syntheses. The Connectivity

Map result suggests that phenothiazines have

an activity that mimics ablation of the arachi-

donic acid cascade and is therefore entirely

consistent with the observation that pheno-

thiazines can inhibit prostaglandin synthesis

(19). Indeed, more recently, phenothiazine deriv-

atives have been developed as potent dual cyclo-

oxygenase/lipoxygenase inhibitors that exhibit

anti-inflammatory activity (20). Had this activity

of phenothiazines not been previously discovered

by serendipity, it would have been systematically

revealed by the Connectivity Map.

These findings confirm that even pertur-

bagens not acting immediately proximal to tran-

scription do give rise to distinguishable gene-

expression profiles and demonstrate again that

the Connectivity Map can reveal complex bio-

logical activities. They also show that the Con-

nectivity Map approach can use both internal as

well as external query signatures.

Identification of gedunin as an HSP90 in-

hibitor. We next sought to use the Connectivity

Map to generate hypotheses about the mech-

anism of action of an uncharacterized small

molecule. In a separate study, we performed a

high-throughput gene expression–based screen

for small molecules capable of abrogating the

gene-expression signature of androgen receptor

(AR) activation in prostate cancer cells. The

details of the screen and its biochemical follow-

up are described elsewhere (21). One of the hits

from the screen was the triterpenoid natural

product gedunin (22) (Fig. 5A), purified from

the Meliacae family of medicinal plants. The

mechanism by which gedunin abrogated AR

activity was entirely unknown because this com-

pound has not been extensively characterized.

In an effort to elucidate its mechanism of

action, we defined a signature for gedunin (Sig-

nature S7) by treating LNCaP prostate cancer

cells for 6 hours with the compound, and

queried the Connectivity Map. High connectiv-

ity scores were found for multiple instances of

three heat shock protein 90 (HSP90) inhibitors:

geldanamycin, 17-allylamino-geldanamycin,

and 17-dimethylamino-geldanamycin (Fig. 5B).

As a class, these HSP90 inhibitors showed

marked connectivity to the gedunin signature

(permutation P-value G 0.0001).

This result suggests that gedunin, though

structurally dissimilar from known HSP90

inhibitors (Fig. 5A), might impinge upon the

HSP90 pathway. Because the stability of AR is

known to be dependent upon HSP90 activity,

we asked whether AR expression could be

diminished by gedunin treatment. Immuno-

blotting indicated that AR protein, as well as

other HSP90-interacting proteins, was nearly en-

tirely eliminated in gedunin-treated LNCaP and

Ba/F3 cells (Fig. 5C), consistent with gedunin

acting as an inhibitor of HSP90 function. More-

over, mutant interacting proteins such as the

BCR-ABL T315I point mutant and the FLT3

internal tandem duplication (ITD) mutant show

increased sensitivity to gedunin-mediated inhi-

bition, as is seen upon HSP90 inhibition by

geldanamycins (23, 24). Further biochemical

studies demonstrated that the mechanism of

abrogating HSP90 function was distinct from

geldanamycin and its analogs (21).

These experiments demonstrate that the Con-

nectivity Map can generate testable hypotheses

about the target pathways of poorly character-

ized small molecules, providing a potentially

powerful tool for pharmaceutical development.

Connections with Disease States

We next sought to collect query signatures

from disease states and scan the Connectivity

Map to identify small molecules that might

mimic or suppress that disease.

Diet-induced obesity. We made use of a

signature for the obese state from a published

report (25) of the genes differentially expressed

in a rat model of diet-induced obesity (Signa-

ture S8). The conditions used in that study dif-

fered sharply from those used to build the

Connectivity Map with respect to RNA source

(adipose tissue versus cell lines), treatment du-

ration (65 days versus 6 hours), and species

(rat versus human). Despite these differences,

instances of three peroxisome proliferator-

activated receptor gamma (PPARg) agonists—

the thiazolidindiones (TZD), troglitazone and

rosiglitazone, and indometacin (26–28)—received

high connectivity scores (fig. S4). Indeed, all

three compounds are potent inducers of adipo-

genesis in vitro (26–28). Further, that TZDs

promote weight gain in vivo has been widely

observed as a consequence of their clinical use
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alpha-estradiol [702]
genistein [703]
alpha-estradiol [762]
estradiol [665]

100 nM
10 nM
10 µM
10 nM
10 nM
10 nM
10 nM
10 nM
10 nM
10 µM
10 µM
10 nM
1 µM

100 nM
10 µM
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HL60
PC3
PC3

MCF7
PC3

0.936
0.918
0.913
0.899
0.813
0.809
0.807
0.794
0.758
0.753
0.730
0.646
0.619
0.610
0.561
0.552
0.435
0.421
0.376

0
0
0
0

B
rank perturbagen dose cell score

171
261
447
450
451
452
453

fulvestrant [704]
fulvestrant [523]
fulvestrant [367]
fulvestrant [310]
fulvestrant [985]
fulvestrant [1076]
fulvestrant [1043]

1 µM
1 µM
1 µM
10 nM
1 µM
10 nM
1 µM

PC3
ssMCF7
MCF7
MCF7
MCF7
MCF7
MCF7

0
0

-0.749
-0.843
-0.961
-0.989

-1

1

453

1

453

Fig. 3. Estrogen receptor agonists and antagonists. (A)
Estrogen receptor agonists are highly ranked with an external
17b-estradiol signature. Barview (as in Fig. 2) with all estradiol
(n 0 10), alpha-estradiol (n 0 7), and genistein (n 0 7) in-
stances shown. (B) A pure antiestrogen is negatively con-
nected. Barview with all fulvestrant (n 0 7) instances shown.
Unabridged results from this query are provided as Result S2.
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as oral antidiabetic agents and is considered a

major drawback of their use (29). The Connec-

tivity Map would have predicted this particular

adverse effect.

These results must be tempered, however,

because they derive solely from PC3—the only

cell line in our panel to express PPARg at high

levels (30)—and TZD and indometacin instances

made in all other cell lines yielded null or neg-

ative scores. Clearly, these connections would

not have been made had this particular cellular

context not been represented. Of note, the other

known PPARg agonist in our collection, 15-delta

prostaglandin J2 (26), received a null score

even in PC3, although the entire set of ago-

nists (including 15-delta prostaglandin J2) still

showed significant enrichment as a class (per-

mutation P-value 0 0.0021). Overall, it is nota-

ble that a signature derived from rat adipose

tissue after many weeks of treatment can gen-

erate connections with small molecules applied

acutely to epithelial cells in culture.

Alzheimer’s disease. We next explored query

signatures for Alzheimer’s disease (AD). AD is

the most common cause of dementia in the el-

derly, but its pathogenesis is poorly understood

and effective therapies remain elusive. We

made use of two independent reports of the

gene-expression changes in brain tissue from

AD patients.

The first signature consisted of 40 genes

identified through a comparison of hippocampus

from AD and normal brain (31) (Signature S9).

The second, derived from the comparison

between cerebral cortex from AD brain and

age-matched controls, contained 25 genes (32)

(Signature S10). Although there were no genes in

common between these two query signatures,

both yielded statistically significant negative

connectivity with the two independent instances

of 4,5-dianilinophthalimide (DAPH) in the Con-

nectivity Map (fig. S5). No other compound in

the database shared this behavior.

DAPH was recently identified in a cell-free

screen for small molecules that could reverse

the formation of fibrils (specifically, decreasing

the b-sheet content of aggregating Ab1-42

peptide) thought to be responsible for the ac-

celerated neuronal cell death in the brains of

AD patients (33). Indeed, a variety of new

DAPH analogs have since been synthesized as

potential treatments for AD (34). Our observa-

tions strengthen the candidacy of DAPH as a

potential AD therapeutic and further illustrate

the potential of the Connectivity Map to

generate novel, unbiased hypotheses concerning

the pharmacologic modulation of disease states.

Dexamethasone resistance in ALL. As a fi-

nal example, we considered one of the most

vexing problems in cancer chemotherapy: drug

resistance. Specifically, we explored resistance to

the glucocorticoid dexamethasone in children

with acute lymphoblastic leukemia (ALL). Dexa-

methasone resistance has been observed both

in vivo and in primary leukemia cells grown in

short-term culture (35). We defined a gene-

expression signature of dexamethasone sensitiv-

ity (Signature S11) by comparing bone-marrow

leukemic cells from patients exhibiting either

dexamethasone sensitivity or resistance in vitro.

The details of this signature are reported else-

where (36).

B
rank perturbagen dose cell score
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9
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trifluoperazine [421]
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fluphenazine [1075]
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chlorpromazine [426]
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10 µM
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10 µM
10 µM
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MCF7
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MCF7
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1
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0.957
0.951
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0.621
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0.616
0.602
0.601
0.590
0.571
0.542
0.426

0
0
0

C
rank perturbagen dose cell score

6
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haloperidol [418]
clozapine [416]
haloperidol [492]
haloperidol [983]
clozapine [1009]
haloperidol [1041]
haloperidol [1024]
haloperidol [1082]

10 µM
10 µM
10 µM
10 µM
10 µM
10 µM
10 µM
10 µM

MCF7
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MCF7
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MCF7
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0.580
0.541
0.524
0.385
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N
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Cl
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rank perturbagen dose cell score

427
442
451

arachidonic acid [443]
arachidonic acid [604]
arachidonic acid [441]

10 µM
10 µM
10 µM

MCF7
MCF7
MCF7

-0.602
-0.843
-0.971

1

453

1

453

Fig. 4. Phenothiazine connections. (A) Chemical structures. Three structural
subclasses are shown: with a piperazine group in the side chain
(fluphenazine, trifluoperazine, prochlorperazine), with a piperidine ring in
the side chain (thioridazine), and with an aliphatic side chain (chlorprom-
azine). (B) Recovery of phenothiazine instances with an internal pheno-
thazine signature. Barview (as in Fig. 2) with all thioridazine (n 0 4),
chlorpromazine (n 0 4), fluphenazine (n 0 4), trifluoperazine (n 0 3),

and prochlorperazine (n03) instances shown. The instances used to
generate the signature are shaded. (C) Ranking of nonphenothiazine
antipsychotics and arachidonic acid instances with the phenothiazine
signature. Barview showing all haloperidol (n 0 6), clozapine (n 0 2),
and arachidonic acid (n 0 3) instances. Permutation P-values are
0.1428, 0.0621, and 0.0002, respectively. Unabridged results from this
query are provided as Result S3.

RESEARCH ARTICLES

www.sciencemag.org SCIENCE VOL 313 29 SEPTEMBER 2006 1933

on July 26, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


When the signature of dexamethasone sen-

sitivity was used to query the Connectivity Map,

we found strong connectivity to the mTOR in-

hibitor sirolimus (also known as rapamycin) (Fig.

6A). This result suggested that sirolimus might

revert dexamethasone resistance. Indeed, treatment

of the lymphoid cell line CEM-c1 with sirolimus

conferred dexamethasone sensitivity to this other-

wise resistant cell line, reducing the median in-

hibitory concentration (IC
50

) by a factor of more

than 50 (Fig. 6B). Additional experiments indi-

cated that this activity was mTOR dependent,

resulting in apoptosis mediated through down-

regulation of the anti-apoptotic protein MCL1

(36). Whatever the mechanism, the result from

Fig. 5. Gedunin modu-
lates the HSP90 pathway.
(A) Chemical structure of
gedunin and 17-allylamino-
geldanamycin. (B) Gedunin
is connected with geldana-
mycin and its analogs.
Barview (as in Fig. 2)
showing all 17-allylamino-
geldanamycin (n 0 18),
geldanamycin (n 0 6),
and 17-dimethylamino-
geldanamycin (n 0 2) in-
stances for the gedunin
signature. Unabridged re-
sults from this query are
provided as Result S7. (C)
Gedunin lowers the levels
of HSP90-interacting pro-
teins, including the an-
drogen receptor (AR), in
LNCaP cells and Ba/F3 cells
ectopically expressing them.
Mutant HSP90-interacting
proteins (BCR-ABL T315I
point mutant and the
FLT3-ITD internal tandem
duplication mutant) show
increased sensitivity to
gedunin treatment. EGFR,
epidermal growth factor
receptor.

Fig. 6. Sirolimus reverses gluco-
corticoid resistance in acute
lymphoblastic leukemia. (A)
Barview (as in Fig. 2) showing
all 10 sirolimus instances.
Permutation P-value for this
set of instances is G0.0001.
Unabridged results from this
query are provided as Result
S11. (B) The effect of a com-
bination of sirolimus and dexa-
methasone on the viability of
glucocorticoid-resistant lymph-
oid cells. CEM-c1 cells were
treated with 10 nM sirolimus
and various concentrations of
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dexamethasone (closed circles) or dexamethasone alone (open circles) for 72 hours. Cell viability was assessed by MTT reduction and expressed relative
to untreated control cultures. Plot shows means and standard deviations for triplicate determinations from one representative experiment.

RESEARCH ARTICLES

29 SEPTEMBER 2006 VOL 313 SCIENCE www.sciencemag.org1934

on July 26, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


the Connectivity Map immediately suggests that

sirolimus should be tested in a clinical trial of

ALL patients with dexamethasone resistance.

Sirolimus is already FDA approved as an immu-

nosuppressant and is well tolerated in children,

and the clinical prognosis of dexamethasone-

resistant ALL is poor (37–40). This example

demonstrates that the Connectivity Map is one

approach to the rapid identification of new

potential uses for existing drugs.

Discussion

The value of a Connectivity Map depends on

many open questions. How many distinct cellular

pathways and states actually exist? How many

cell types must be studied to provide sufficient

diversity? How many perturbagens (small mole-

cules, inhibitory RNAs, open reading frames)

would need to be characterized to provide sub-

stantial coverage? How many concentrations,

time points, and replicates would be required to

provide reliable data? What analytical tools will

be needed to interpret the data and determine

precise estimates of statistical significance and

false-positive rates? And, most important, what

will be the biomedical value of the data? Only

empirical evidence will resolve these issues.

Although only a first step, our results are

encouraging. They show that genomic signatures

can be used to recognize drugs with common

mechanisms of action (HDAC inhibitors and

estrogen receptor modulators), discover unknown

mechanisms of actions (gedunin as an HSP90

inhibitor), and identify potential new therapeutics

(the ability of sirolimus to overcome dexametha-

sone resistance in ALL). Our findings also reveal

that signatures are often conserved across diverse

cell types and settings (the signature of dexameth-

asone resistance was defined in bone-marrow

samples but searched against profiles from the

MCF7 breast cancer line). At the same time, the

results demonstrate the limitations of using only a

few cell lines (the signature of estradiol was not

detected in cells that lack estrogen receptors) or

only a few concentrations (chlorpromazine was

not recognized as a phenothiazine at 1 mM). It is

also likely that our methodologies can still be re-

fined. Indeed, alternative signature-based pattern-

matching methods have been developed [e.g.,

(41)]. In addition, the interpretation of results

depends on the ability to confidently call connec-

tions. More rigorous methods for the estimation

of statistical significance are therefore proba-

bly also required, especially as the size of the

database grows. But overall, the basic features of

our approach appear to work well. We have,

therefore, created a Web-based tool (www.broad.

mit.edu/cmap) to allow researchers to perform

their own Connectivity Map analyses with user-

defined signatures in real time.

On the basis of the results of this pilot study,

we propose that a sensible next step would be the

generation of an expanded Connectivity Map as

a community resource project in the spirit of

other genomic efforts. An initial goal might be to

profile all FDA-approved drugs and inhibitory

RNAs targeting a large collection of genes in

perhaps 10 diverse cell lines. Further goals

would depend on the utility of the data. Ul-

timately, it will be interesting to explore whether

it is possible to create a truly comprehensive

catalog that begins to saturate all possible cel-

lular states. In the meanwhile, even an incom-

plete Connectivity Map will likely accelerate

progress in characterizing new chemical entities,

finding new uses for existing drugs, and under-

standing the molecular mechanisms of disease.
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Structure of the 70S Ribosome
Complexed with mRNA and tRNA
Maria Selmer,* Christine M. Dunham,* Frank V. Murphy IV, Albert Weixlbaumer,
Sabine Petry, Ann C. Kelley, John R. Weir, V. Ramakrishnan†

The crystal structure of the bacterial 70S ribosome refined to 2.8 angstrom resolution reveals
atomic details of its interactions with messenger RNA (mRNA) and transfer RNA (tRNA). A metal ion
stabilizes a kink in the mRNA that demarcates the boundary between A and P sites, which is
potentially important to prevent slippage of mRNA. Metal ions also stabilize the intersubunit
interface. The interactions of E-site tRNA with the 50S subunit have both similarities and
differences compared to those in the archaeal ribosome. The structure also rationalizes much
biochemical and genetic data on translation.

A
major breakthrough for our mecha-

nistic understanding of translation was

achieved some years ago when high-

resolution structures of the 50S and 30S ribo-

somal subunits were solved (1, 2). Progress has

also been made in obtaining structural data on

the whole ribosome. The subunit structures were

used to facilitate interpretation of maps at 5.5 )
resolution of the whole 70S ribosome complexed

with mRNA and tRNA (3). More recently, the

structure of the Escherichia coli ribosome was

solved at 3.5 ) resolution (4). At the same
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